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SUMMARY:
A machine learning framework developed previously by the authors was employed to hindcast damage to residential
buildings impacted by Hurricane Ian in September 2022. This data-driven framework considers three categories of
input – building features, hazard intensity, and geospatial features – to predict hurricane damage at the building level.
The framework was developed and internally validated with historical hurricanes, and Ian provided the first opportunity
to test the model on a new hurricane which was not present in the training data. A validation set of residential
buildings was compiled by referencing post-event aerial and street-view imagery. Modifications were then made to
the framework via undersampling to balance the proportion of damage states represented in the training data and
the inclusion of socioeconomic features. Preliminary results for Hurricane Ian indicated a need for input features
that better capture the load effects of coastal hazards. To this end, computational simulations are being investigated
to forecast wind, waves, and water levels for a given hurricane. Forecasted hazard features from simulations will
then enable the machine learning model to operate in its objective as a tool for forecasting hurricane impacts on
infrastructure before hurricanes make landfall.

Keywords: hurricane, damage prediction, machine learning

1. MOTIVATION
Hurricanes in the US Gulf of Mexico and Atlantic coasts represent the most significant natural
hazards to human safety, infrastructure stability, and economic disruption. Annualized hurricane
impacts in the US total billions of dollars, with single-year peaks reaching hundreds of billions
(Pielke et al., 2008). Additionally, US landfalling hurricanes are directly responsible for an aver-
age of 50 fatalities each year, while a single event may reach over 1,000 (e.g., Hurricane Katrina)
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(Rappaport, 2014). Both losses via infrastructure damage and loss of life stand to be mitigated
by accurate predictions not only of hurricane track and intensity, but also impacts on coastal in-
frastructure. Modern meteorological forecasting has effectively informed coastal communities of
expected hazards to drastically reduce hurricane-related deaths compared to mid-twentieth-century
forecasting (Willoughby et al., 2007). However, improvements in forecasting structural impacts
are still needed to better influence individuals’ risk perception which largely relies upon metrics
that can be interpreted and trusted across all demographics in a region (Bowser and Cutter, 2015;
Willoughby et al., 2007). Klepac et al. (2022) developed a framework to provide such risk analysis
throughout a community at the individual building scale. This model was refined and applied to
Hurricane Ian in a hindcast mode as a first step in validating its performance as a tool for coastal
community stakeholders to inform decision-making and provide insights into coastal infrastructure
resilience.

2. METHODS
2.1. Machine Learning Framework
The model used for predicting hurricane damage to residential buildings during Hurricane Ian is an
adaptation of the data-driven machine learning (ML) model developed previously by the authors
(Klepac et al., 2022). This model uses the random forest (RF) algorithm, an ensemble of decision
trees (DTs). In a DT, observations in the training data are sorted according to their feature values
to establish decision rules for sorting new data and enable the output of probabilities that new data
observations belong to available target classes (i.e., damage states) (Breiman et al., 1984). In an
RF, an ensemble of such DTs is assembled, with each DT considering only a subset of features
when sorting training data. The RF output for new data is the average of the probabilistic output of
all its DTs (Breiman, 2001). The target class, damage state (DS) in this case, for each observation
is determined as that with the greatest probability as output by the RF.

The RF model was fitted to training data of residential buildings whose categorical DS and building
features were tabulated by National Science Foundation (NSF) funded Structural- and Geotechni-
cal Extreme Events Reconnaissance (StEER and GEER) networks following Hurricanes Harvey
(2017), Irma (2017), Michael (2018), and Laura (2020). The assigned DS in the reconnaissance
data follows the methodology of Hazus of five DS ranging from "no damage" to "destruction"
(Vickery et al., 2006). These DS were adapted for the ML model to DS-0: No Damage (Hazus
DS-0), DS-1: Non-Structural (Hazus DS-1 and DS-2), and DS-2: Structural (Hazus DS-3 and DS-
4), which coincide with Hazus DS descriptions. Each of the buildings (9 features) was also coupled
with wind and water hazard (3 features), geospatial (5 features), and socioeconomic (5 features)
data corresponding to the buildings’ locations. The RF model was fitted to 2,403 single-family res-
idential buildings containing all 22 features. A testing set of 100 single-family residential buildings
impacted by Hurricane Ian was compiled by obtaining building features and assigning DS through
the use of post-event aerial and street-view imagery provided by Site Tour 360 et al. (2022) and
concatenating the remaining hazard, geospatial, and socioeconomic features associated with each
building. These buildings were selected randomly throughout the imagery coverage area, without
prior consideration of the damage they received.



2.2. Revised Input Features
The input features for training and testing data mostly coincide with those in the model formulation
of Klepac et al. (2022) with one substituted feature and several additional features. At the time of
analysis, Federal Emergency Management Agency depth grids, which were used to obtain total
water levels at building locations for the training data, were not available for the Ian impact area.
Instead, this feature was substituted with high water marks (HWMs) obtained for each hurricane
in the training and testing data from the US Geological Survey Flood Event Viewer (2022), and
the elevation of the nearest HWM was assigned to each building.

Literature pertaining to hurricane risk assessment suggests a correlation between residential build-
ing damage and socioeconomic demographics of the building’s occupants. Two sources were
identified to leverage these factors in DS predictions. First, median household income at the Cen-
sus tract-level from Federal Financial Institutions Examination Council Census data (2022) was
assigned to each building. Second, the Centers for Disease Control and Prevention Social Vulnera-
bility Index (SVI) (2020) was used to obtain 4 additional features related to socioeconomic factors.
These SVI features are Census tract-level rankings of "socioeconomic status", "household charac-
teristics", "racial and ethnic minority status", and "housing type and transportation" determined
from US Census data.

3. PRELIMINARY RESULTS AND DISCUSSION
The RF model was tuned and fitted to all the training data, then Hurricane Ian testing data were
introduced to make DS predictions. Initial testing results of 35% accuracy and an average f1-
score of 0.18 were considerably lower than the 76% accuracy on a validation set during initial
model development by Klepac et al. (2022). Specifically, the model predicted all Hurricane Ian
testing observations as DS-1. A potential explanation lies in the DS distribution among the training
dataset, in which DS-1 represented 62% of observations while DS-0 and DS-2 represented 18%
and 20%, respectively. When training data contains a target class imbalance, decision rules in the
RF are more likely to lead to a majority class prediction while providing lesser reinforcement of
minority classes.

A common method to counter class imbalance is undersampling, or eliminating some training
observations belonging to the majority class, DS-1 in this case. The Near Miss algorithm, a k-
Neighbors undersampling method in the Imbalanced Learn package for Python, was employed to
balance DS representation in the training data (Lemaître et al., 2017). This algorithm eliminates
majority class (DS-1) samples based on their proximity in the feature space to minority class (DS-0
and DS-2) samples until the number of majority class samples is equal to that of the next largest
class. Undersampling proved to assist prediction accuracy as indicated by 53% accuracy and an
average f1-score of 0.41 among testing data when the RF was fitted to undersampled training data.

In addition to class imbalance, at least two other factors are believed to hinder the RF model’s
predictive performance. First, the surface roughness feature used in the RF model was the rough-
ness length obtained at the Census tract-level, which is too coarse of a resolution. For example,
a given Census tract on Pine Island, FL contains urbanized areas, agricultural fields, and dense
mangrove forests, but the entire region would be assigned the same roughness value. An ongoing



step forward is evaluating the fidelity and resolution of available land cover products which contain
more detailed information than simply a roughness length. Second, the hazard features used in this
model likely do not provide an adequate representation of hurricane hazard loading. Particularly,
the HWMs representing water levels do not have sufficient resolution, nor do HWMs explain the
cause of the observed water level (e.g., storm surge, precipitation, or riverine flooding) or account
for wave forcing. Rather than utilize such a coarse data source, a higher resolution feature may
come from computer modeling, which is currently being explored. With this method, meteorolog-
ical forcing will be obtained as hurricanes develop and used to conduct simulations which output
water levels, wave height, and wind speeds on finer resolution grids.

The ongoing process to include hurricane simulation output as hazard feature input into the ML
model will move the model forward toward its objective function as a forecasting tool for impacts
to infrastructure. When this methodology is implemented, hazard features will be obtained as the
hurricane develops and updated as the track progresses, geospatial and socioeconomic features
will be readily obtained for the expected impact region, and building features will be generated
from either publicly available or artificial intelligence assisted building inventories for the impact
region. The resulting product will then work in real-time to predict hurricane damage to buildings
and update those predictions as the hurricane approaches and uncertainty in the track is reduced.
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